

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 3903-3907

Tetrahedron Letters

A novel synthesis of cyclic α-amino aldehydes, amino alcohols, and α-amino acid methyl esters from cyclic ketones through sulfinylaziridines

Hiroyuki Ota, Toshio Chyouma, Shuyu Iso and Tsuyoshi Satoh*

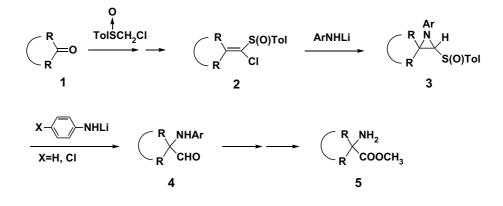
Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received 13 February 2004; revised 10 March 2004; accepted 19 March 2004

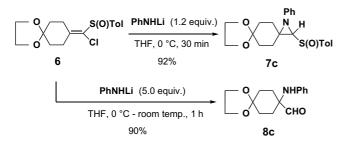
Abstract—Treatment of 1-chlorovinyl *p*-tolyl sulfoxides, which were synthesized from cyclic ketones and chloromethyl *p*-tolyl sulfoxide in three steps in good yields, with *N*-lithio arylamines gave sulfinylaziridines in high yields. On treatment with *N*-lithio aniline or *N*-lithio *p*-chloroaniline, the sulfinylaziridines gave α -amino aldehydes in high yields. The α -amino aldehydes were converted to amino alcohols and α -amino acid methyl esters in moderate to good yields. This procedure offers an efficient method for synthesis of cyclic α -quaternary α -amino aldehydes, amino alcohols, and α -amino acid derivatives from cyclic ketones. © 2004 Elsevier Ltd. All rights reserved.

Amino acids are the fundamental building blocks of peptides and proteins and play essential roles in living organisms.¹ Because of the physiological importance of α -amino acids, innumerable studies for their chemistry and synthesis have been published.² Recently, quaternary α -amino acids³ and β -amino acids⁴ have received considerable attention. Especially, the cyclic α -quaternary α -amino acids are conformationally constrained, they are used in controlling peptide secondary structures and in drug design and development.⁵ The synthesis and chemistries of cyclic α -quaternary α -amino acids have attracted great attention these days.⁶ On the other hand, α -amino aldehydes and amino alcohols are also quite important and interesting compounds in organic chemistry.⁷

We have reported some new synthetic methods starting from 1-chlorovinyl *p*-tolyl sulfoxides 2,⁸ which were synthesized easily from aldehydes and ketones 1, and chloromethyl *p*-tolyl sulfoxide. In continuation of our study concerning the use of 1-chlorovinyl *p*-tolyl sulfoxides in the development of new synthetic methods, herein we report our recent results for a novel synthesis of cyclic α -quaternary α -amino aldehydes 4 and α -amino acid methyl esters 5 from the 1-chlorovinyl *p*-tolyl sulfoxide 2 via the sulfinylaziridines 3 (Scheme 1).


First, 1-chlorovinyl *p*-tolyl sulfoxide 6^9 was treated with 1.2 equiv of *N*-lithio aniline in THF at 0 °C for 30 min. Quite clean reaction took place and sulfinylaziridine $7c^{10}$ was obtained in 92% yield (Scheme 2). It is interesting to note that the product 7c is a single isomer though it has two stereogenic centers. On the other hand, when this reaction was conducted with excess *N*-lithio aniline at room temperature, α -amino aldehyde $8c^{11}$ was obtained in 90% yield.

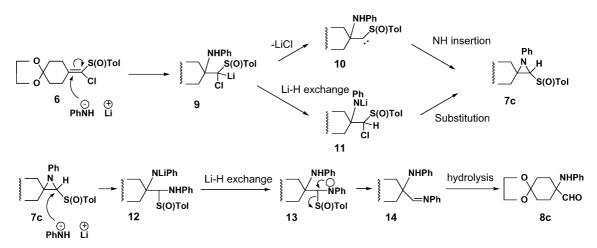
A plausible mechanism of this very interesting reaction is as follows (Scheme 3). Conjugate addition of *N*-lithio aniline to the 1-chlorovinyl *p*-tolyl sulfoxide 6 gave the adduct 9, which affords α -sulfinyl carbenoid 10 with elimination of LiCl. N–H insertion reaction, then, took place to give the sulfinylaziridine 7c. Another plausible path for the formation of 7c is thought to be the substitution of the chloride by nitrogen via 11.


The mechanism for the formation of the α -amino aldehyde **8c** by treatment of **6** with excess *N*-lithio aniline was confirmed to be as follows. The sulfinylaziridine **7c** is attacked by the anilide to give ring-opened adduct **12**. The sulfinyl group in **12** is eliminated via **13** to give imine **14**, which is hydrolyzed in the work-up process to give the α -amino aldehyde **8c**. In fact, treatment of the sulfinylaziridine **7c** with excess *N*-lithio aniline at room

Keywords: Sulfoxides; Sulfinylaziridine; Amination; Cyclic α-amino aldehyde; Cyclic α-amino acid.

^{*} Corresponding author. Tel.: +3-5228-8272; fax: +3-3235-2214; e-mail: tsatoh@ch.kagu.tus.ac.jp

Scheme 1.


Scheme 2.

temperature resulted in the formation of α -amino aldehyde **8c** in high yield (vide infra, Table 3, entry 4).

In order to know what kind of amines afford the sulfinylaziridine 7, the vinyl sulfoxide 6 was treated with various *N*-lithio arylamines and *N*-lithio alkylamines, and the results are summarized in Table 1. As shown in Table 1, arylamines gave sulfinylaziridine 7 in good to high yields (entries 1–5), except *p*-nitroaniline (entry 6). Quite interestingly, no alkylamine gave the desired sulfinyl aziridine 7. The reaction with about 2 equiv of *N*-lithio alkylamines did not proceed; however, with large excess of *N*-lithio alkylamines, the reaction only resulted in decomposition of **6** (entries 7–9). The results for a trial to synthesize the α -amino aldehydes **8** directly from **6** are summarized in Table 2. The reaction was conducted with large excess of various *N*-lithio arylamines at room temperature. As shown in Table 2, very limited arylamines gave the desired α -amino aldehyde **8** (entries 3 and 4). It is interesting to note that *o*-methoxy and *p*-methoxy aniline gave a mixture of the aldehyde **8** and imine **14** (entries 1 and 2). From these results, we concluded that there is little prospect for the synthesis of α -amino aldehydes by this direct procedure.

Next, we investigated the reaction of the sulfinyl aziridine 7 with various *N*-lithio arylamines and found that *N*-lithio aniline and *N*-lithio *p*-chloroaniline gave good to high yields of the desired α -amino aldehyde 8 (Table 3). As can be expected, this reaction with *N*-lithio 4-methoxyaniline gave a mixture of the aldehyde 8 and the imine 14.

Finally, the α -amino aldehyde **8a** (the product in Table 3, entry 1) was converted to cyclic α -quaternary α -amino acid methyl ester **16** (Scheme 4). Because highly oxidizable nitrogen is present in **8a**, a mild oxidizing reagent for the conversion of aldehyde to carboxylic acid must be selected. We found that iodine and a base in methanol were the reagent of choice.¹² The α -amino

Scheme 3. A plausible mechanism for the formation of sulfinylaziridine 7c and α -amino aldehyde 8c.

Table 1. Synthesis of sulfinylaziridine 7 from 1-chlorovinyl p-tolyl sulfoxide 6 with various N-lithio amines

	$ \begin{array}{c} O \\ O \\ O \\ O \end{array} \xrightarrow{S(O)Tol} \\ CI \\ \hline THF \\ \hline O \\ O \\ \hline THF \\ \hline O \\ O \\ \hline O \\ S(O)Tol \\ \hline S(O)Tol \\ \hline O \\ \hline \hline \hline O \\ \hline \hline O \\ \hline \hline \hline O \\ \hline \hline \hline \hline$				
Entry	RNHLi		Temperature °C	7 Yield %	
	R	(Equivalents)			
1	o-MeOC ₆ H ₄	(2.1)	0	7a 80	
2	p-MeOC ₆ H ₄	(1.3)	0	7b 90	
3	C_6H_5	(1.2)	0	7c 92	
4	p-ClC ₆ H ₄	(1.7)	0	7d 93	
5	p-CNC ₆ H ₄	(2.3)	0	7e 84	
6	$p-NO_2C_6H_4$	(1.7)	0 to rt	a	
7	$CH_2 = CHCH_2$	(5.3)	0	b	
8	CH ₃ (CH ₂) ₅	(5.2)	0	b	
9	PhCH ₂	(2.2)	0	b	

^a No reaction.

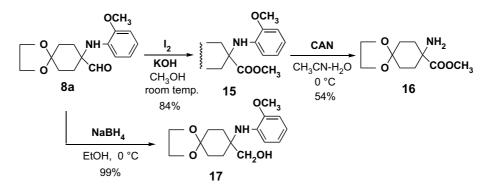
^bA complex mixture.

Table 2. Synthesis of α -amino aldehyde 8 from 1-chlorovinyl p-tolyl sulfoxide 6 with various N-lithio arylamines

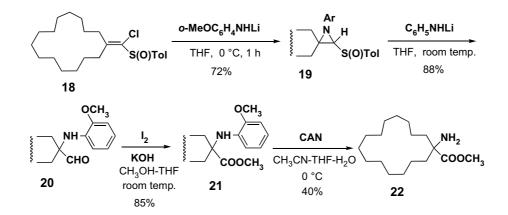
	$ \begin{array}{c} O \\ O \\ O \end{array} \xrightarrow{S(O)Tol} \underbrace{ArNHLi}_{THF} & \begin{array}{c} V \\ O \\ CI \end{array} \xrightarrow{HF} & \begin{array}{c} V \\ CHO \end{array} + \begin{array}{c} V \\ CHO \end{array} \xrightarrow{HHAr} \\ CH=NAr \end{array} $				
		6 room temp. 8	14		
Entry		ArNHLi	8 Yield %	14 Yield %	
	Ar	(Equivalents)			
1	o-MeOC ₆ H ₄	(12.4)	8a — ^a	14a — ^a	
2	<i>p</i> -MeOC ₆ H ₄	(7.5)	8b — ^b	14b — ^b	
3	C_6H_5	(4.0)	8c 90	0	
4	p-ClC ₆ H ₄	(8.3)	8d 80	0	
5	p-CNC ₆ H ₄	(6.2)	0^{c}	0	

^a An inseparable mixture of α -amino aldehyde **8a** and imine **14a**; 84% yield. ^b An inseparable mixture of α -amino aldehyde **8b** and imine **14b**; 40% yield.

^c The product of this reaction was the sulfinylaziridine 7e (Table 1, entry 5; yield 75%).


Table 3. Synthesis of α -amino aldehvde 8 from sulfinvlazi
--

	$ \begin{array}{c c} & Ar \\ & N \\ & N \\ & N \\ & S(O)Tol \\ & THF \\ & THF \\ & room temp., 4 h \\ & 8 \\ \end{array} $ NHAr CHO				
Entry	Ar	Ar'	(Equivalents) ^a	8 Yield %	
1	o-MeOC ₆ H ₄	C ₆ H ₅	(5.5)	8a 90	
2	p-MeOC ₆ H ₄	C_6H_5	(4.0)	8b 76	
3	<i>p</i> -MeOC ₆ H ₄	p-ClC ₆ H ₄	(5.5)	8b 91	
4	C_6H_5	C_6H_5	(4.0)	8c 94	
5	p-ClC ₆ H ₄	$p-\mathrm{ClC}_6\mathrm{H}_4$	(4.5)	8d 90	
6	p-CNC ₆ H ₄	C_6H_5	(8.5)	0ь	


^a Use of less amount of aniline or *p*-chloroaniline gave incomplete reaction.

^bA complex mixture.

aldehyde 8a was treated with a solution of iodine and KOH in methanol to give the methyl ester 15 in 84% yield. Finally, the methyl ester 15 was treated with celic ammonium nitrate (CAN).¹³ This reaction gave the desired free amine 16 in moderate yield. Reduction of the aldehyde 8a with NaBH4 in ethanol gave the desired

Scheme 4.

Scheme 5.

amino alcohol **17** in a quantitative yield without any problem.

To investigate the generality of these reactions, we further studied this procedure starting from 1-chlorovinyl *p*-tolyl sulfoxide **18** derived from cyclopentadecanone⁹ (Scheme 5). The reaction of 1-chlorovinyl *p*-tolyl sulfoxide **18** with *N*-lithio 2-methoxyaniline gave the desired sulfinylaziridine **19** in somewhat lower yield (72%) compared with the examples in Table 1. The amino aldehyde **20** was obtained from **19** by treatment with *N*lithio aniline in 88% yield. Oxidation of the aldehyde group to a methoxycarbonyl group was successful by the oxidation with iodine to afford the amino acid methyl ester **21** in 85% yield. Finally, the methoxyphenyl group was eliminated with CAN as above to give the cyclic amino acid methyl ester having a large carbon ring **22** in moderate yield.

We are continuing to study the scope and limitation of this procedure and extension of this reaction to the asymmetric synthesis of cyclic and acyclic α -quaternary α -amino aldehydes, amino alcohols, and amino acid derivatives.

Acknowledgements

This work was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan to promote multi-disciplinary research project, which is gratefully acknowledged.

References and notes

- 1. Chemistry and Biochemistry of the Amino Acids; Barrett, G. C., Ed.; Chapman and Hall: London, 1985.
- (a) Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon: Oxford, 1989; (b) Duthaler, R. O. Tetrahedron 1994, 50, 1539; (c) Beller, M.; Eckert, M.: Angew. Chem., Int. Ed. 2000, 39, 1011.
- (a) Cativiela, C.; Diaz-de-Villegas, M. D. *Tetrahedron:* Asymmetry **1998**, 9, 3517; (b) Cativiela, C.; Diaz-de-Villegas, M. D. *Tetrahedron: Asymmetry* **2000**, 11, 645; (c) Sano, S.; Nagao, Y. J. Synth. Org. Chem. Jpn. **2000**, 58, 756; (d) Tanaka, M. J. Synth. Org. Chem. Jpn. **2002**, 60, 125.
- 4. (a) Cole, D. C. Tetrahedron **1994**, 50, 9517; (b) Juaristi, E.; Quintana, D.; Escalante, J. Aldrichimica Acta **1994**, 27, 3; (c) Enantioselective Synthesis of β -Amino Acids; Juaristi, E., Ed.; Wiley-VCH: New York, 1997; (d) Davies, S. G.; Ichihara, O. J. Synth. Org. Chem. Jpn. **1997**, 55, 26; (e) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett **2001**, 1813; (f) Liu, M.; Sibi, M. P. Tetrahedron **2002**, 58, 7991.
- 5. Park, K.-H.; Kurth, M. J. Tetrahedron 2002, 58, 8629.
- Some recent reviews and papers concerning cyclic amino acids. (a) Czombos, J.; Aelterman, W.; Tkachev, A.; Martins, J. C.; Tourwe, D.; Peter, A.; Toth, G.; Fulop, F.; Kimpe, N. D. J. Org. Chem. 2000, 65, 5469; (b) Kabalka, G. W.; Das, B. C.; Das, S. Tetrahedron Lett. 2001, 42,

7145; (c) Volk, F.-J.; Wagner, M.; Frahm, A. W. Tetrahedron: Asymmetry **2003**, 14, 497; (d) Truong, M.; Lecornue, F.; Fadel, A. Tetrahedron: Asymmetry **2003**, 14, 1063; (e) Kotha, S. Acc. Chem. Res. **2003**, 36, 342; (f) Andrei, M.; Undheim, K. Tetrahedron: Asymmetry **2004**, 15, 53.

- 7. Jurczak, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149.
- (a) Satoh, T.; Ota, H. Tetrahedron Lett. 1999, 40, 2977; (b) Satoh, T.; Ota, H. Tetrahedron 2000, 56, 5113; (c) Satoh, T.; Yoshida, M.; Ota, H. Tetrahedron Lett. 2001, 42, 9241; (d) Satoh, T.; Sakamoto, T.; Watanabe, M. Tetrahedron Lett. 2002, 43, 2043; (e) Satoh, T.; Sugiyama, S.; Ota, H. Tetrahedron Lett. 2002, 43, 3033; (f) Satoh, T.; Yoshida, M.; Takahashi, Y.; Ota, H. Tetrahedron: Asymmetry 2003, 14, 281; (g) Satoh, T.; Sugiyama, S.; Kamide, Y.; Ota, H. Tetrahedron 2003, 59, 4327; (h) Satoh, T.; Sakamoto, T.; Watanabe, M.; Takano, K. Chem. Pharm. Bull. 2003, 51, 966; (i) Satoh, T.; Wakasugi, D. Tetrahedron Lett. 2003, 44, 7517; (j) Satoh, T.; Kawashima, T.; Takahashi, S.; Sakai, K. Tetrahedron 2003, 59, 9599.
- Satoh, T.; Takano, K.; Ota, H.; Someya, H.; Matsuda, K.; Koyama, M. *Tetrahedron* 1998, 54, 5557.
- Compound 7c: Colorless crystals; mp 151–154 °C (AcOEt-hexane). IR (KBr) 1595, 1492, 1397, 1272, 1080, 1048, 1030 (SO)/cm; ¹H NMR δ 1.12, 1.42, 1.63 (each 1H, m), 1.75 (2H, m), 1.97, 2.20, 2.27 (each 1H, m), 2.45 (3H, s), 3.26 (1H, s), 3.95 (4H, m), 6.89 (2H, d, *J* = 7 Hz), 6.99 (1H, t, *J* = 7 Hz), 7.19 (2H, t, *J* = 8 Hz), 7.39, 7.69 (each 2H, d, *J* = 8 Hz); MS *m*/*z* (%) 383 (M⁺, trace), 367 (2), 244

(39), 158 (100). Calcd for $C_{22}H_{25}NO_3S$: 383.1555. Found: m/z 383.1545.

- 11. n-BuLi (0.5 mmol) was added dropwise to a solution of aniline (0.5 mmol) in 1 mL of dry THF at 0 °C with stirring. The solution was stirred at 0 °C for 10 min. To this solution was added a solution of 6 (33 mg; 0.1 mmol) in 0.5 mL of THF. The cooling bath was removed and the reaction mixture was stirred at room temperature for 1 h. The reaction was quenched by adding saturated aq NH₄Cl and the whole was extracted with AcOEt. The product was purified by silica gel column chromatography to give the cyclic amino aldehyde 8c (23.5 mg; 90%) as colorless crystals; mp 92-94 °C (AcOEt-hexane). IR (KBr) 3392 (NH), 1711 (CO), 1600, 1091/cm; ¹H NMR δ 1.74 (4H, m), 1.95 (2H, m), 2.05 (2H, m), 3.95 (4H, m), 6.56 (2H, m), 6.74 (1H, m), 7.19 (2H, m), 9.64 (1H, s, CHO). MS m/z (%) 261 (M⁺, 6), 232 (100), 170 (32). Calcd for C₁₅H₁₉NO₃: 261.1364. Found: *m*/*z* 261.1367.
- 12. Inch, T. D.; Ley, R. V.; Rich, P. J. Chem. Soc. (C) 1968, 1693.
- (a) Bravo, P.; Guidetti, M.; Viani, F.; Zanda, M.; Markovsky, A. L.; Sorochinsky, A. E.; Soloshonok, I. V.; Soloshonok, V. A. *Tetrahedron* 1998, 54, 12789; (b) Bravo, P.; Capelli, S.; Crucianelli, M.; Guidetti, M.; Markovsky, A. L.; Meille, S. V.; Soloshonok, V. A.; Sorochinsky, A. E.; Viani, F.; Zanda, M. *Tetrahedron* 1999, 55, 3025; (c) Fustero, S.; Pina, B.; Garcia de la Torre, M.; Navarro, A.; Ramirez de Arellano, C.; Simon, A. Org. Lett. 1999, 977.